organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4-*tert*-butyl-5-(2-chlorobenzyl)thiazol-3-ium bromide

Gao Cao,^a Ai-Xi Hu,^a* Juan-Juan Xu^b and Lin Xia^b

^aThe School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China

Correspondence e-mail: axhu0731@yahoo.com.cn

Received 9 April 2007; accepted 11 April 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.053; wR factor = 0.158; data-to-parameter ratio = 16.0.

As part of a search for potent fungicidal agents, the title compound, $C_{14}H_{18}ClN_2S^+\cdot Br^-$, has been synthesized. The dihedral angle between the planes of the thiazole and the chlorophenyl ring is 95.1 (2)°. The molecules are connecteded by $N-H\cdots Br$ hydrogen bonds. The *tert*-butyl group shows rotational disorder.

Related literature

For related literature, see: He *et al.* (2006); Marcantonio *et al.* (2002); Xu *et al.* (2007).

Experimental

Crystal data C₁₄H₁₈ClN₂S⁺·Br⁻

 $M_r = 361.72$

Monoclinic, $P2_1/c$ a = 9.4439 (5) Å b = 14.5569 (8) Å c = 12.1926 (6) Å	Z = 4 Mo K\alpha radiation $\mu = 2.80 \text{ mm}^{-1}$ T = 173 (2) K
$\beta = 102.9880 (10)^{\circ}$ $V = 1633.28 (15) \text{ Å}^3$ <i>Data collection</i>	0.48 × 0.39 × 0.32 mm
Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.302, T_{max} = 0.407$	10068 measured reflections 3203 independent reflections 2545 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	117 restraints
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 2.10 \text{ e} \text{ Å}^{-3}$
3203 reflections	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$
200 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2B\cdots Br1^{i}$	0.88	2.36	3.232 (4)	169
$N2-H2A\cdots Br1$	0.88	2.54	3.314 (4)	147
$N1 - H1 \cdots Br1$	0.88	2.50	3.262 (4)	146

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was funded by the Key Laboratory of Pesticides and Chemical Biology, South China Agricultural University, Ministry of Education, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2341).

References

Bruker (1997). *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2001). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA. He, D.-H., Cao, G. & Hu, A.-X. (2006). *Acta Cryst*. E**62**, 05637–05638.

Marcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). *Tetrahedron Lett.* 43, 8845–8848.

Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, 0533-0534.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o2534 [doi:10.1107/81600536807018065]

2-Amino-4-tert-butyl-5-(2-chlorobenzyl)thiazol-3-ium bromide

G. Cao, A.-X. Hu, J.-J. Xu and L. Xia

Comment

2-Amino-4-arylthiazoles have been utilized extensively by chemists due to their pharmaceutical importance in drug design and extensive application in organic synthesis (Marcantonio *et al.*, 2002). The biological utility of 2-amino-4-arylthiazoles is wide-ranging, especially because of their antifungal activities. Two 2-Amino-4-arylthiazoles crystal structures were reported before (He *et al.*, 2006; Xu *et al.*, 2007). The title compound (I) was prepared as part of an ongoing investigation on the synthesis and structural properties of 2-amino-4-arylthiazole derivatives.

The dihedral angle between the chlorophenyl and thiazole ring planes is 95.1 (2)°. The molecules are linked by N–H…Br hydrogen bonds.

Experimental

1-(2-Chlorophenyl)-4,4-dimethylpentan-3-one (0.0067 mol) was dissolved in 267 ml e thanol and the mixture was stirred and heated to reflux. Cupric bromide (0.133 mol) was added to the reaction mixture in batches and the course of the reaction was followed by TLC analysis. After the reaction had finished, the mixture was filtered and concentrated in vacuo. The resulting residue was taken up in dichloromethane, washed with 10% hydrochloric acid, then washed with water until the solution was neutral, dried over anhydrous sodium sulfate and concentrated in vacuo to give 2-bromo-1-(2-chlorophenyl)-4,4-dimethylpentan-3-one, yield 90.8%. Then a solution of thiourea (0.03 mol) and the bromide (0.03 mol) in ethanol (82 ml) was refluxed for 9 h. The solvent was evaporated and the precipitate formed was filtered out, dried, giving white crystals of (I), yield 63.2%. The crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All H atoms were refined using a riding model, with N—H distances of 0.88 and C—H distances ranging from to 0.99 Å, and with $U_{iso}(H)=1.2U_{eq}(C, N)$, or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids, H atoms are drawn as spheres of arbitrary radii. Only the major occupied sites of the disordered t-butyl group are shown.

Fig. 2. The packing of (I), viewed down the *a* axis, showing the N—H…Br hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted. Only the major occupied sites of the disordered t-butyl group are shown.

2-Amino-4-tert-butyl-5-(2-chlorobenzyl)thiazol-3-ium bromide

Crystal data

 $C_{14}H_{18}CIN_2S^+ \cdot Br^ M_r = 361.72$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 9.4439 (5) Å *b* = 14.5569 (8) Å c = 12.1926 (6) Å $\beta = 102.9880 \ (10)^{\circ}$ $V = 1633.28 (15) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer	3203 independent reflections
Radiation source: fine-focus sealed tube	2545 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 173(2) K	$\theta_{\rm max} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 10$
$T_{\min} = 0.302, \ T_{\max} = 0.407$	$k = -17 \rightarrow 17$
10068 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0807P)^{2} + 4.4972P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.158$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 2.10 \text{ e } \text{\AA}^{-3}$
3203 reflections	$\Delta \rho_{min} = -0.83 \text{ e} \text{ Å}^{-3}$
200 parameters	Extinction correction: none
117 restraints	

 $D_{\rm x} = 1.471 \ {\rm Mg \ m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4663 reflections $\theta = 2.2 - 26.9^{\circ}$ $\mu = 2.80 \text{ mm}^{-1}$ T = 173 (2) K Block, colorless $0.48 \times 0.39 \times 0.32 \text{ mm}$

 $F_{000} = 736$

•
2545 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\rm max} = 26.0^{\circ}$
$\theta_{\min} = 2.2^{\circ}$
$h = -11 \rightarrow 10$
$k = -17 \rightarrow 17$
$l = -14 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	0.70549 (6)	0.19049 (4)	0.14190 (4)	0.0487 (2)	
S1	0.41454 (15)	0.14640 (11)	0.47178 (11)	0.0561 (4)	
Cl1	-0.00232 (19)	0.19312 (14)	0.40805 (16)	0.0836 (6)	
C1	0.5088 (5)	0.1765 (3)	0.3711 (4)	0.0423 (11)	
C2	0.3359 (5)	0.0752 (3)	0.2738 (4)	0.0406 (10)	
C3	0.2996 (5)	0.0735 (4)	0.3747 (4)	0.0475 (12)	
C4	0.2775 (6)	0.0254 (4)	0.1637 (4)	0.0462 (11)	
C5	0.2212 (12)	0.0923 (6)	0.0703 (7)	0.091 (3)	0.852 (10)
H5A	0.1405	0.1275	0.0878	0.136*	0.852 (10)
H5B	0.1871	0.0588	-0.0004	0.136*	0.852 (10)
H5C	0.2993	0.1345	0.0625	0.136*	0.852 (10)
C6	0.4073 (9)	-0.0285 (6)	0.1333 (8)	0.075 (2)	0.852 (10)
H6A	0.4581	-0.0637	0.1990	0.112*	0.852 (10)
H6B	0.4749	0.0150	0.1111	0.112*	0.852 (10)
H6C	0.3699	-0.0707	0.0708	0.112*	0.852 (10)
C7	0.1650 (9)	-0.0479 (6)	0.1718 (7)	0.067 (2)	0.852 (10)
H7A	0.0774	-0.0185	0.1859	0.101*	0.852 (10)
H7B	0.2051	-0.0900	0.2337	0.101*	0.852 (10)
H7C	0.1401	-0.0824	0.1010	0.101*	0.852 (10)
C5A	0.112 (4)	0.066 (3)	0.122 (4)	0.069 (8)	0.148 (10)
H5AA	0.0729	0.0799	0.1884	0.104*	0.148 (10)
H5AB	0.0506	0.0200	0.0758	0.104*	0.148 (10)
H5AC	0.1142	0.1220	0.0785	0.104*	0.148 (10)
C6A	0.357 (4)	0.026 (3)	0.086 (3)	0.060 (8)	0.148 (10)
H6AA	0.3259	0.0769	0.0342	0.090*	0.148 (10)
H6AB	0.3425	-0.0323	0.0446	0.090*	0.148 (10)
H6AC	0.4594	0.0329	0.1231	0.090*	0.148 (10)
C7A	0.245 (5)	-0.076 (3)	0.205 (4)	0.064 (8)	0.148 (10)
H7AA	0.1514	-0.0756	0.2271	0.096*	0.148 (10)
H7AB	0.3222	-0.0931	0.2702	0.096*	0.148 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

0.2422	-0.1197	0.1441	0.096*	0.148 (10)
0.1870 (7)	0.0204 (4)	0.4199 (5)	0.0593 (15)	
0.0939	0.0208	0.3631	0.071*	
0.2190	-0.0442	0.4329	0.071*	
0.1633 (5)	0.0608 (3)	0.5289 (4)	0.0444 (11)	
0.0812 (5)	0.1407 (4)	0.5319 (5)	0.0507 (13)	
0.0658 (6)	0.1785 (4)	0.6355 (5)	0.0529 (14)	
0.0107	0.2328	0.6376	0.064*	
0.1315 (6)	0.1350 (4)	0.7312 (5)	0.0559 (14)	
0.1241	0.1603	0.8015	0.067*	
0.2078 (7)	0.0564 (4)	0.7296 (5)	0.0600 (15)	
0.2507	0.0263	0.7982	0.072*	
0.2227 (6)	0.0206 (4)	0.6304 (5)	0.0537 (13)	
0.2766	-0.0346	0.6311	0.064*	
0.4537 (4)	0.1344 (3)	0.2742 (3)	0.0370 (8)	
0.4889	0.1430	0.2140	0.044*	
0.6226 (5)	0.2309 (3)	0.3875 (4)	0.0559 (12)	
0.6671	0.2412	0.3325	0.067*	
0.6545	0.2571	0.4535	0.067*	
	0.2422 0.1870 (7) 0.0939 0.2190 0.1633 (5) 0.0812 (5) 0.0658 (6) 0.0107 0.1315 (6) 0.1241 0.2078 (7) 0.2507 0.2227 (6) 0.2766 0.4537 (4) 0.4889 0.6226 (5) 0.6671 0.6545	0.2422 -0.1197 0.1870 (7) 0.0204 (4) 0.0939 0.0208 0.2190 -0.0442 0.1633 (5) 0.0608 (3) 0.0812 (5) 0.1407 (4) 0.0658 (6) 0.1785 (4) 0.0107 0.2328 0.1315 (6) 0.1350 (4) 0.1241 0.1603 0.2078 (7) 0.0264 (4) 0.2507 0.0263 0.2227 (6) 0.0206 (4) 0.2766 -0.0346 0.4537 (4) 0.1344 (3) 0.4889 0.1430 0.6671 0.2571	0.2422 -0.1197 0.1441 0.1870 (7) 0.0204 (4) 0.4199 (5) 0.0939 0.0208 0.3631 0.2190 -0.0442 0.4329 0.1633 (5) 0.0608 (3) 0.5289 (4) 0.0812 (5) 0.1407 (4) 0.5319 (5) 0.0658 (6) 0.1785 (4) 0.6355 (5) 0.0107 0.2328 0.6376 0.1315 (6) 0.1350 (4) 0.7312 (5) 0.1241 0.1603 0.8015 0.2078 (7) 0.0264 (4) 0.7296 (5) 0.2227 (6) 0.0206 (4) 0.6304 (5) 0.2766 -0.0346 0.6311 0.4537 (4) 0.1344 (3) 0.2742 (3) 0.4889 0.1430 0.2140 0.6671 0.2412 0.3325 0.6545 0.2571 0.4535	0.2422-0.11970.14410.096*0.1870 (7)0.0204 (4)0.4199 (5)0.0593 (15)0.09390.02080.36310.071*0.2190-0.04420.43290.071*0.1633 (5)0.0608 (3)0.5289 (4)0.0444 (11)0.0812 (5)0.1407 (4)0.5319 (5)0.0507 (13)0.0658 (6)0.1785 (4)0.6355 (5)0.0529 (14)0.01070.23280.63760.064*0.1315 (6)0.1350 (4)0.7312 (5)0.0559 (14)0.12410.16030.80150.067*0.2078 (7)0.0564 (4)0.7296 (5)0.0600 (15)0.25070.02630.79820.072*0.2227 (6)0.0206 (4)0.6304 (5)0.0537 (13)0.2766-0.03460.63110.064*0.4537 (4)0.1344 (3)0.2742 (3)0.0370 (8)0.48890.14300.21400.044*0.6226 (5)0.2309 (3)0.3875 (4)0.0559 (12)0.66710.24120.33250.067*0.65450.25710.45350.067*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0529 (3)	0.0666 (4)	0.0289 (3)	-0.0152 (2)	0.0142 (2)	0.0046 (2)
S1	0.0563 (8)	0.0763 (10)	0.0442 (7)	-0.0278 (7)	0.0294 (6)	-0.0254 (7)
Cl1	0.0602 (9)	0.1074 (14)	0.0811 (12)	0.0073 (9)	0.0117 (8)	0.0524 (10)
C1	0.043 (3)	0.047 (3)	0.042 (3)	-0.010 (2)	0.019 (2)	-0.015 (2)
C2	0.035 (2)	0.049 (3)	0.041 (2)	-0.011 (2)	0.0145 (19)	-0.010 (2)
C3	0.047 (3)	0.056 (3)	0.043 (3)	-0.015 (2)	0.018 (2)	-0.015 (2)
C4	0.048 (3)	0.055 (3)	0.034 (2)	-0.010 (2)	0.0058 (19)	-0.008 (2)
C5	0.123 (7)	0.078 (5)	0.055 (4)	-0.003 (4)	-0.017 (4)	0.003 (4)
C6	0.065 (4)	0.083 (5)	0.078 (5)	-0.013 (3)	0.019 (4)	-0.044 (4)
C7	0.067 (4)	0.083 (5)	0.054 (4)	-0.034 (4)	0.019 (3)	-0.022 (3)
C5A	0.062 (9)	0.074 (11)	0.068 (12)	0.009 (9)	0.006 (8)	-0.009 (9)
C6A	0.063 (10)	0.067 (12)	0.052 (11)	-0.005 (8)	0.019 (8)	-0.007 (8)
C7A	0.070 (12)	0.061 (9)	0.062 (12)	-0.005 (8)	0.015 (9)	-0.003 (8)
C8	0.060 (3)	0.070 (4)	0.056 (3)	-0.024 (3)	0.031 (3)	-0.012 (3)
C9	0.038 (2)	0.050 (3)	0.052 (3)	-0.008 (2)	0.027 (2)	-0.006 (2)
C10	0.038 (3)	0.062 (3)	0.053 (3)	-0.010 (2)	0.012 (2)	0.022 (3)
C11	0.049 (3)	0.044 (3)	0.075 (4)	0.007 (2)	0.033 (3)	0.003 (3)
C12	0.064 (3)	0.064 (4)	0.048 (3)	-0.002 (3)	0.030 (3)	0.001 (3)
C13	0.061 (3)	0.071 (4)	0.051 (3)	0.006 (3)	0.019 (3)	0.012 (3)
C14	0.046 (3)	0.051 (3)	0.067 (4)	0.008 (2)	0.018 (3)	0.006 (3)
N1	0.039 (2)	0.044 (2)	0.0305 (18)	-0.0094 (17)	0.0129 (15)	-0.0109 (16)
N2	0.059 (3)	0.068 (3)	0.049 (2)	-0.034 (2)	0.029 (2)	-0.029 (2)

Geometric parameters (Å, °)				
S1—C1	1.727 (5)	С5А—Н5АВ	0.9800	

S1—C3	1.768 (5)	С5А—Н5АС	0.9800
Cl1—C10	1.717 (5)	С6А—Н6АА	0.9800
C1—N2	1.314 (6)	С6А—Н6АВ	0.9800
C1—N1	1.329 (6)	С6А—Н6АС	0.9800
C2—C3	1.349 (6)	С7А—Н7АА	0.9800
C2—N1	1.407 (6)	С7А—Н7АВ	0.9800
C2—C4	1.516 (6)	С7А—Н7АС	0.9800
C3—C8	1.515 (7)	C8—C9	1.514 (7)
C4—C6A	1.33 (3)	C8—H8A	0.9900
C4—C5	1.502 (9)	C8—H8B	0.9900
C4—C7	1.525 (8)	C9—C14	1.369 (8)
C4—C6	1.568 (9)	C9—C10	1.403 (8)
C4—C7A	1.61 (3)	C10—C11	1.415 (8)
C4—C5A	1.64 (3)	C11—C12	1.349 (8)
С5—Н5А	0.9800	C11—H11	0.9500
С5—Н5В	0.9800	C12—C13	1.355 (8)
С5—Н5С	0.9800	C12—H12	0.9500
С6—Н6А	0.9800	C13—C14	1.353 (8)
С6—Н6В	0.9800	С13—Н13	0.9500
С6—Н6С	0.9800	C14—H14	0.9500
С7—Н7А	0.9800	N1—H1	0.8800
С7—Н7В	0.9800	N2—H2A	0.8800
С7—Н7С	0.9800	N2—H2B	0.8800
C5A—H5AA	0.9800		
C1—S1—C3	90.8 (2)	C4—C5A—H5AB	109.5
N2—C1—N1	123.8 (4)	Н5АА—С5А—Н5АВ	109.5
N2—C1—S1	125.4 (4)	C4—C5A—H5AC	109.5
N1—C1—S1	110.7 (3)	H5AA—C5A—H5AC	109.5
C3—C2—N1	111.7 (4)	H5AB—C5A—H5AC	109.5
C3—C2—C4	133.1 (4)	С4—С6А—Н6АА	109.5
N1—C2—C4	115.2 (4)	С4—С6А—Н6АВ	109.5
C2—C3—C8	133.1 (5)	Н6АА—С6А—Н6АВ	109.5
C2—C3—S1	110.9 (4)	С4—С6А—Н6АС	109.5
C8—C3—S1	116.0 (4)	Н6АА—С6А—Н6АС	109.5
C6A—C4—C5	68 (2)	Н6АВ—С6А—Н6АС	109.5
C6A—C4—C2	118.5 (18)	С4—С7А—Н7АА	109.5
C5—C4—C2	111.0 (5)	С4—С7А—Н7АВ	109.5
C6A—C4—C7	124.1 (18)	Н7АА—С7А—Н7АВ	109.5
C5—C4—C7	111.7 (6)	C4—C7A—H7AC	109.5
C2—C4—C7	113.4 (5)	Н7АА—С7А—Н7АС	109.5
C5—C4—C6	107.9 (7)	Н7АВ—С7А—Н7АС	109.5
C2—C4—C6	107.5 (5)	C9—C8—C3	112.1 (4)
C7—C4—C6	104.9 (6)	С9—С8—Н8А	109.2
C6A—C4—C7A	114 (2)	С3—С8—Н8А	109.2
C5—C4—C7A	140.6 (19)	С9—С8—Н8В	109.2
C2C4C7A	102.4 (17)	C3—C8—H8B	109.2
C6—C4—C7A	80.2 (17)	H8A—C8—H8B	107.9
C6A—C4—C5A	115 (2)	C14—C9—C10	116.6 (5)
C5—C4—C5A	51.9 (16)	C14—C9—C8	121.0 (5)

C2—C4—C5A	103.4 (16)	C10—C9—C8	122.4 (5)
C7—C4—C5A	69.0 (17)	C9—C10—C11	120.9 (5)
C6—C4—C5A	148.1 (16)	C9—C10—Cl1	119.5 (4)
C7A—C4—C5A	101 (2)	C11—C10—Cl1	119.6 (4)
С4—С5—Н5А	109.5	C12-C11-C10	118.1 (5)
C4—C5—H5B	109.5	C12—C11—H11	121.0
H5A—C5—H5B	109.5	C10-C11-H11	121.0
С4—С5—Н5С	109.5	C11—C12—C13	121.8 (5)
H5A—C5—H5C	109.5	C11—C12—H12	119.1
H5B—C5—H5C	109.5	C13—C12—H12	119.1
С4—С6—Н6А	109.5	C14—C13—C12	120.0 (6)
C4—C6—H6B	109.5	C14—C13—H13	120.0
H6A—C6—H6B	109.5	C12—C13—H13	120.0
С4—С6—Н6С	109.5	C13—C14—C9	122.7 (5)
H6A—C6—H6C	109.5	C13—C14—H14	118.7
H6B—C6—H6C	109.5	C9—C14—H14	118.7
С4—С7—Н7А	109.5	C1—N1—C2	115.9 (4)
С4—С7—Н7В	109.5	C1—N1—H1	122.1
H7A—C7—H7B	109.5	C2—N1—H1	122.1
С4—С7—Н7С	109.5	C1—N2—H2A	120.0
H7A—C7—H7C	109.5	C1—N2—H2B	120.0
H7B—C7—H7C	109.5	H2A—N2—H2B	120.0
С4—С5А—Н5АА	109.5		
C3—S1—C1—N2	-177.2 (5)	C2—C3—C8—C9	-165.2 (6)
C3—S1—C1—N1	0.5 (4)	S1—C3—C8—C9	17.5 (7)
N1—C2—C3—C8	-177.7 (6)	C3—C8—C9—C14	-102.7 (6)
C4—C2—C3—C8	0.9 (11)	C3—C8—C9—C10	76.8 (7)
N1—C2—C3—S1	-0.3 (6)	C14—C9—C10—C11	1.9 (7)
C4—C2—C3—S1	178.3 (5)	C8—C9—C10—C11	-177.6 (5)
C1—S1—C3—C2	-0.1 (5)	C14—C9—C10—Cl1	-177.7 (4)
C1—S1—C3—C8	177.8 (5)	C8—C9—C10—Cl1	2.8 (7)
C3—C2—C4—C6A	-165 (2)	C9—C10—C11—C12	-0.4 (8)
N1-C2-C4-C6A	14 (2)	Cl1—C10—C11—C12	179.3 (4)
C3—C2—C4—C5	119.8 (8)	C10-C11-C12-C13	-1.5 (9)
N1-C2-C4-C5	-61.6 (7)	C11—C12—C13—C14	1.7 (9)
C3—C2—C4—C7	-6.8 (10)	C12-C13-C14-C9	0.0 (9)
N1—C2—C4—C7	171.7 (6)	C10-C9-C14-C13	-1.7 (8)
C3—C2—C4—C6	-122.3 (7)	C8—C9—C14—C13	177.8 (5)
N1—C2—C4—C6	56.2 (7)	N2—C1—N1—C2	177.0 (5)
C3—C2—C4—C7A	-38.8 (19)	S1—C1—N1—C2	-0.8 (6)
N1—C2—C4—C7A	139.8 (18)	C3—C2—N1—C1	0.7 (7)
C3—C2—C4—C5A	65.8 (19)	C4—C2—N1—C1	-178.2 (4)
N1-C2-C4-C5A	-115.6 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2B…Br1 ⁱ	0.88	2.36	3.232 (4)	169
N2—H2A…Br1	0.88	2.54	3.314 (4)	147

N1—H1…Br1	0.88	2.50	3.262 (4)	146
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$.				
Fig. 1	0			
0.06	C7			
CA.			C 14	
			C13	0
	C2	C9	E	
C5		9/C3		C12
			C10	
NI		CI1	C11	
	C1	S1		
Br1				

